Question 336.
If sin2x = 22 - 8√7, prove that sinx + cosx + tanx + cosecx + secx + cotx = 7, given that angle x is acute.
Answer 336.
I had not answered this question, but while voting, I found this question to be good and have a better simpler answer posted here.
sin2x = 22 - 8√7
=> 2sinx cosx = 22 - 8√7
=> sinx cosx = 11 - 4√7 ... ( 1 )
1 + sin2x = 23 - 8√7
=> (sinx + cosx)^2 = 23 - 2√(112) = (4 - √7)^2
=> sinx + cosx = 4 - √7 ... ( 2 )
sinx + cosx + tanx + cosecx + secx + cotx
= (sinx + cosx) + (cosecx + secx) + (tanx + cotx)
= (sinx + cosx) + (1/sinx + 1/cosx) + (sinx/cosx + cosx/sinx)
= (sinx + cosx) + (sinx + cosx) / sinx cosx + (sin^2 x + cos^2 x) / sinx cosx
= (4 - √7) + (4 - √7) / (11 - 4√7) + 1 / (11 - 4√7)
= [(4 - √7) * (11 - 4√7) + (4 - √7) + 1] / (11 - 4√7)
= (44 + 28 - 27√7 + 5 - √7) / (11 - 4√7)
= 7 * (11 - 4√7) / (11 - 4√7)
= 7.
No comments:
Post a Comment