Question 337.
=> 5x^4 dx = √5 sec^2 t dt
=> Integral
= ∫ [5x^4 √(5 + x^10) / 5x^20 dx
= ∫ [(√5 sec^2 t) * √(5 + 5tan^2 t)] dt / 5 * 25tan^4 t
= (1/25) ∫ (sec^3 t / tan^4 t) dt
= (1/25) ∫ (cost / sin^4 t) dt
= (1/25) ∫ sin^-4 t d(sint)
Evaluate ∫ √(5 + x^10) / x^(16) dx.
Answer 337.
Let x^5 = √5 tant
=> Integral
= ∫ [5x^4 √(5 + x^10) / 5x^20 dx
= ∫ [(√5 sec^2 t) * √(5 + 5tan^2 t)] dt / 5 * 25tan^4 t
= (1/25) ∫ (sec^3 t / tan^4 t) dt
= (1/25) ∫ (cost / sin^4 t) dt
= (1/25) ∫ sin^-4 t d(sint)
= - 1 / (75sin^3 t) + c ... (1)
x^5 = √5 tant
=> tant = x^5/√5=> sint = x^5 / √(5 + x^10)
=> sin^3 t = x^15 / (5 + x^10)^(3/2)
Plugging in (1),
Integral
= - (5 + x^10)^(3/2) / (75x^15) + c.
thank you sir..
ReplyDelete