Question 463.
What is the wavelength of electron in n'th Bohr orbit ?
Answer 463.
For the electron of hydrogen atom,
mv^2/r = ke^2/r^2
=> mv^2 * r = ke^2
ByBohr's first hypothesis,
mvr = nh/2π
Taking ratio,
v = 2πke^2/nh
=> mv = 2mπ * ke^2/nh
de Broglie wavelength of the elctron
= h/mv
= nh^2 / 2 π mke^2
= 2 π n * [(1/mk) * (h/2π*e)^2]
= 2 π n * [1/(9.1 x 10^-31 x 9 x 10^9) * (6.62 x 10^-34/2π x 1.6 x 10^-19)^2 m
= 2 π n * 0.00529 x 10^8 m
= 2 π n * 0.529 angstrom units ... [1 angstrom = 10^-10 m].
Link to YA!
What is the wavelength of electron in n'th Bohr orbit ?
Answer 463.
For the electron of hydrogen atom,
mv^2/r = ke^2/r^2
=> mv^2 * r = ke^2
ByBohr's first hypothesis,
mvr = nh/2π
Taking ratio,
v = 2πke^2/nh
=> mv = 2mπ * ke^2/nh
de Broglie wavelength of the elctron
= h/mv
= nh^2 / 2 π mke^2
= 2 π n * [(1/mk) * (h/2π*e)^2]
= 2 π n * [1/(9.1 x 10^-31 x 9 x 10^9) * (6.62 x 10^-34/2π x 1.6 x 10^-19)^2 m
= 2 π n * 0.00529 x 10^8 m
= 2 π n * 0.529 angstrom units ... [1 angstrom = 10^-10 m].
Link to YA!
No comments:
Post a Comment