Question 446.
Solve 2sin(10º)sin(20º + θ) = sin(θ) for 0º < θ < 90º.
Answer 446.
2sin(10º)sin(20º + θ) = sin(θ)
=> cos(θ + 10º) - cos(θ + 30º) = sinθ
=> cos(θ + 10º) = cos(θ + 30º) + cos(90º - θ)
=> cos(θ + 10º) = 2cos60º cos(θ - 30º)
=> cos(θ + 10º) = cos(θ - 30º)
=> θ + 10º = ± (θ - 30º)
=> 2θ = 20º ... [taking the -ve sign on RHS as +ve sign gives no result]
=> θ = 10º.
Link to YA!
Solve 2sin(10º)sin(20º + θ) = sin(θ) for 0º < θ < 90º.
Answer 446.
2sin(10º)sin(20º + θ) = sin(θ)
=> cos(θ + 10º) - cos(θ + 30º) = sinθ
=> cos(θ + 10º) = cos(θ + 30º) + cos(90º - θ)
=> cos(θ + 10º) = 2cos60º cos(θ - 30º)
=> cos(θ + 10º) = cos(θ - 30º)
=> θ + 10º = ± (θ - 30º)
=> 2θ = 20º ... [taking the -ve sign on RHS as +ve sign gives no result]
=> θ = 10º.
Link to YA!
Sir,
ReplyDeleteHere is an alternate solution
2sin(10º)sin(20º + θ) = sin(θ)
Introduce 2 on RHS by writing 1 = 2(1/2) = 2sin 30°
2sin(10º)sin(20º + θ) = sin(θ) =(2)Sin(θ)(1/2) = 2 Sin(θ) (Sin 30°) = 2 Sin(θ) (Sin 20° + 10°)
compare with LHS to get θ = 10°
Thanks for posting a very elegant solution. I appreciate it.
ReplyDelete