Blog Archive

Sunday, March 20, 2011

Q.320. Geometry

Question 320.
Find AG in the figure as under.

Answer 320.
As the answer is independent of the radius of the circle, the best choice of the radius will be such that DC passes through the center of the circle. As one vertical line is at a distance 4 from A and the other at a distance 9 from A, the center must be at a distance (1/2) * (4 + 9) = 6.5 from A
=> radius of the circle can be taken as 6.5.
 Refer to the figure drawn.


Δs AOC and BOD are isosceles and congruent.
[OA = OB = radius and OC = OD = radius and vertically opposite angles O are equal.]
=> x
= DF
= √[(6.5)^2 - (2.5)^2]
= 6.

Though  my  above  answer  was  selected   as  the  best, it  involves  an  unproved  assumption  of the  answer being  independent  of  the  radius  of  the  circle.

One  of  my  contacts,  Rakesh  Dubey,  who  is  very  good  at  solving  challenging  problems of  geometry  besides those  of  other  topics  of  maths,  provided  a  superior  solution  in  which  he  has  solved  the  problem  without  any  assumption  as  above.  He  had  posted  his  solution  in  comments  section  after the question  was  closed  for  answering.  His  solution  is  as  under.

Refer  to  the  following  figure.

 

Join  A  and  B  to  C  and  D.
In  right  triangle  ADB,  it  can  be  proved  with  simple  geometry  that
DF^2  =  AF * FB   ...   ...   ...   ...   ...   ( 1 )

In  right  Δs  CAG  and  BDF,
angle  ACG  =  angle  DBF
=> Δs  CAG  and  BDF  are  similar
=> AC / BD = AG / DF = x / DF
=> x = (AC * DF) / BD
=> x^2 = (AC^2 * DF^2) / BD^2   ...   ( 2 )

In  right  Δs  CAE  and  BAC,
angle A is common
=> Δs  CAE  and  BAC are similar
=> AC/BA = AE/AC
=> AC^2 = AE * BA   ...   ...   ...   ...   ( 3 )

In  right  Δs  BDF  and  BAD,
angle B is common
=> Δs  BDF  and  BAD are similar
=> BD^2 = AB * BF   ...   ...   ...   ...  ( 4 )

Plugging DF^2, AC^2 and BD^2 from ( 1 ), ( 3) and ( 4 ) in eqn. ( 2 ),
x^2 = [AE * BA * AF * FB) / (AB * BF)
=> x^2 = AE * AF = 4 * 9 = 36
=> x = AG = 6.

Link to YA!

No comments:

Post a Comment