Blog Archive

Thursday, January 6, 2011

Q.288. Trigo identities.

Question 288.
Use De Moivre's theorem to derive identities for cos3θ  and sin3θ  in terms of cosθ and sinθ.

Answer 288.
(cosθ + isinθ)^3 = cos3θ + isin3θ

LHS
= cos^3 θ + 3(cos^2 θ)(isinθ) + 3cosθ(isinθ)^2 + (isinθ)^3
= cos^3 θ + (3cos^2 θ * sinθ) i - 3cosθ sin^2 θ - (sin^3 θ) i
=> cos3θ + isin3θ = cos^3 θ + (3cos^2 θ * sinθ) i - 3cosθ sin^2 θ - (sin^3 θ) i

Comparing real and imaginary parts,
cos3θ
= cos^3 θ - 3cosθ sin^2 θ
= cos^3 θ - 3cosθ (1 - cos^2 θ)
= 4cos^3 θ - 3cosθ
and
sin3θ
= 3cos^2 θ * sinθ - sin^3 θ
= 3(1 - sin^2 θ) * sinθ - sin^3 θ
= 3sinθ - 4sin^3 θ.

Link to YA!

No comments:

Post a Comment