Question 29.
If the normal at the end of latus rectum of the ellipse x^2/a^2 + y^2/b^2 = 1 passes through (0,-b), then
e^4 + e^2 equals
a) 1 b) √2 c) (√(5)-1)/2 d) (√(5)+1)/2
Answer 29.
x^2/a^2 + y^2/b^2 = 1
=> 2x/a^2 + 2y/b^2 * dy/dx = 0
=> dy/dx = - b^2*x/a^2*y
=> slope of normal
= - dx/dy = a^2*y/b^2*x
End of the latus rectum of ellipse is (ae, b^2/a)
=> slope of normal at the endpoint of the latus rectum
= a^2 * (b^2/a) / b^2 * ae
= 1/e
=> eqn. of normal at the endpoint of latus rectum is
y - b^2/a = (1/e)(x - ae)
If it passes gthrough (0, - b),
- b - b^2/a = (1/e) (0 - ae)
=> b + b^2/a = a
=> ab + b^2 = a^2
=> ab = a^2 - b^2
=> b/a = a^2 - b^2/a^2
=> √(1 - e^2) = e^2
=> 1 - e^2 = e^4
=> e^4 + e^2 = 1
=> Answer ia a) 1.
Link to YA!
If the normal at the end of latus rectum of the ellipse x^2/a^2 + y^2/b^2 = 1 passes through (0,-b), then
e^4 + e^2 equals
a) 1 b) √2 c) (√(5)-1)/2 d) (√(5)+1)/2
Answer 29.
x^2/a^2 + y^2/b^2 = 1
=> 2x/a^2 + 2y/b^2 * dy/dx = 0
=> dy/dx = - b^2*x/a^2*y
=> slope of normal
= - dx/dy = a^2*y/b^2*x
End of the latus rectum of ellipse is (ae, b^2/a)
=> slope of normal at the endpoint of the latus rectum
= a^2 * (b^2/a) / b^2 * ae
= 1/e
=> eqn. of normal at the endpoint of latus rectum is
y - b^2/a = (1/e)(x - ae)
If it passes gthrough (0, - b),
- b - b^2/a = (1/e) (0 - ae)
=> b + b^2/a = a
=> ab + b^2 = a^2
=> ab = a^2 - b^2
=> b/a = a^2 - b^2/a^2
=> √(1 - e^2) = e^2
=> 1 - e^2 = e^4
=> e^4 + e^2 = 1
=> Answer ia a) 1.
Link to YA!

No comments:
Post a Comment